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X-ray powder diffraction data for diamond have been re-analysed, in terms of an 'at rest' deformation-density 
model of monopole, octupole, hexadecapole and hexacontatettarapole terms of exponential form. The 
values of the parameters describing the third and fourth-order terms, and the refinement indices, are no 
different from those of an 'at rest' valence-density model. Unlike earlier analyses, however, the model is 
consistent with experimental measurements of the absolute scale, and with independently determined values 
of the Debye-Waller parameter. The predicted values of physical properties such as the gradient of the 
electric-field gradient at the carbon nucleus are shown to be strongly model-dependent. It is noted that 
the fit to the data, and in particular to the observed structure factor of the overlapping 333-511 reflection, 
is poor for all published charge-density analyses. Recent theoretical (crystal 'Hartree-Fock') calculations 
indicate, within the convolution and harmonic approximations, an experimental B value of 0-172 + 0-006 A2 
and a scale factor of 1.004 _+ 0.002. These theoretical results are, however, in poor agreement with the 
experimental structure factors. 

Introduction 

In conventional structure analyses the mean of the 
'goodness-of-fit' (GoF)* index for the high-order data 
is frequently of the order of unity, while that for the 
inner data is ten or more. This indicates that the 
harmonic approximation is adequate for most purposes, 
but that the atomic approximation is deficient. A 
variety of methods for improving the representation 
of the charge density have been proposed (Dawson, 
1967a; Hirshfeld, 1971; Stewart, 1972a, 1973a; 
Sygusch, 1974). For structures of moderate complexity 
computational costs prohibit the detailed testing of all 
the various charge-density models. Such testing is 
feasible for the diamond structure as the high site 
symmetry reduces the number of unknown parameters. 

An accurate, absolutely-scaled set of powdered- 
diamond diffraction data has been collected by 
G6ttlicher & W61fel (1959), and analysed successively 
by Dawson (1967b), McConnell & Sanger (1970), 
Kurki-Suonio & Ruuskanen (1971), Stewart (1973b,c) 
and by Harel, Hecht & Hirshfeld (1975). The scale 
factor for the data was treated as a variable parameter 
and differs significantly from unity in most cases, in 
conflict with experiment. The analyses also differ 
significantly in the determined B values which, in 
general, are substantially higher than the value of 
0.149-0.150 A 2 calculated (Stewart, 1973b) from 
phonon-dispersion curves measured by inelastic 
neutron scattering. The calculation is supported by a 

* GoF = [E ooi(AFt)2/(n - m)l 1/2 where (.o i is the weight of the 
ith structure factor, F i, n is the number of observed structure 
factors and m is the number of parameters. 

recent value of 0-14-0.17 /~z, obtained by a neutron 
powder diffraction experiment (Price, Maslen & 
Moore, 1978). Most of the studies have not reported 
the GoF index, but reconstruction of the models 
described gives values of approximately 3, the lowest 
value (2- 7) being that of Stewart (1973e). 

Euwema & Greene (1975)have published theoretical 
X-ray structure factors for diamond calculated by a 
crystal Hartree-Fock formalism, which appear to differ 
significantly from the experimental values. Because of 
the increasing importance of charge-density analyses 
in the study of crystalline materials (Hirshfeld, 1971; 
Harel & Hirshfeld, 1975; Harel, Hecht & Hirshfeld, 
1975; Berkovitch-Yellin & Leiserowitz, 1975; Price, 
Varghese & Maslen, 1978) it was considered necessary 
to resolve the conflict between the various experimental 
results, and to reassess the reliability of the theoretical 
structure factors. 

Earlier charge-density models 

The charge-density models can be classified as 
describing the thermally averaged density or as 
describing the 'at rest' density, where the pseudo-atom 
model and the convolution approximation allow the 
deconvolution of the thermal motion. They either 
parameterize the deformation density (where the 
molecular density is written as the sum of the Hartree- 
Fock atomic densities and atomic deformation terms) 
or the valence density (where the density is written 
as the sum of the Hartree-Fock ls core densities and 
one-centre valence-density terms). The site symmetry 
of the diamond structure allows only single first-order 
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(monopole), third-order (octupole), fourth-order (hexa- 
decapole), sixth-order (hexacontatettarapole), etc.  

terms, with the angular form of the Kubic Harmonics. 
The freedom of the various models is in the extent 
of the multipole expansion and the radial form of the 
density terms. 

The analyses of Dawson (1967a,b) and of 
McConnell & Sanger (1970) described the thermally 
smeared deformation density in terms of an octupole 
and hexadecapole function with Gaussian radial 
functions: 

f ( r )  = P r  n exp(--yr2). (1) 

The radial order, n, was fixed at 2, and the Gaussian 
exponent, ),, was constrained to be the same for both 
functions. The population parameter, P, was indepen- 
dently varied. The model of Kurki-Suonio & Ruuska- 
nen (1971) also described the thermally smeared 
deformation density. The values of the Fourier-Bessel 
transform of the radial-density functions were 
evaluated directly from the data. This necessitated the 
choice of the radius, R, of the deformed atom. These 
authors investigated the significance of deformation 
terms of orders 0, 3, 4, 6, 7 and 8. Unfortunately, 
the terms were strongly dependent on the choice of 
the size parameter, R. Harel, Hecht & Hirshfeld's 
(1975) model described the at-rest deformation 
density in terms of an octupole and hexadecapole 
function with Gaussian radial functions of orders 3 
and 4 respectively. Stewart's (1973c) analysis was of 
the at-rest valence density. The pseudo-atom valence 
density was written as the sum of monopole, 
octupole and hexadecapole terms of exponential 
radial form: 

f ( r )  = e N ( ( , n )  r n exp(-2~r) (2) 

where N ( ( , n )  is a normalization coefficient. The 
population, P, of the monopole term was fixed at four 
electrons, and the radial orders, n, were fixed at 2, 3 
and 4 respectively. There was no evidence that the 
exponents, ~, were different for the different terms. 

The results from the different models are similar 
in their description of broad charge-density features 
such as the electron count of the lobes of the octupole 
and hexadecapole functions, and in their fit to the data 
(GoF ~_ 3). They differ in the values determined for the 
temperature-factor coefficient, B, and for the higher- 
order gradients of the electric field at the carbon 
nuclei. Deformation-density models had B values of 
0.20-0.21 A 2 while the valence-density-model values 
were in the range 0.17-0.18 A 2. 

Cusp constraint 

Stewart (1973b) pointed out that the Hartree-Fock 
wavefunctions for the first-row atoms, tabulated by 

Clementi (1965), do not satisfy the nuclear cusp 
condition (Kato, 1957; Pack & Brown, 1966), 

[(tg[7/tgr)/P]rj.=o = --2Z (3) 

where /3 is the spherically averaged one-electron 
density function about the jth nucleus with an atomic 
number of Z. A cusp-constrained core-density function 
was defined as 

Pcc 2[0.957605 ~,,scv~2 lWSCF~Sa'O1 = V~ ls  , + 0 " 0 4 2 3 9 5 ~ ' ~ 1 s  ,~2s , 

(4) 
where ~ c r  is the Clementi self-consistent-field atomic 
orbital for C(3p)  and z, s22~ ° is a Slater-type orbital of 
standard molecular exponent (Hehre, Stewart & Pople, 
1969). The valence-density analysis with this core- 
density function (Stewart, 1973c) resulted in a B value 
of 0.140 _+ 0.004 A 2, quite close to the lattice-dynamic 
values. 

The 'at rest valence density with exponential 
functions' model of Stewart (1973c) gives the best fit 
to the data, but the improvement in the GoF index is 
barely significant when compared with those of the 
other models. This is primarily because of the small 
size of the diamond cell. There is rather limited 
sampling of the low-Bragg-angle region of reciprocal 
space, where the valence scattering is large. Conse- 
quently the uncertainty in the GoF index is much 
bigger than similar GoF uncertainties for data of 
comparable quality from larger cells. 

Model dependence of physical properties 

Stewart (1972b) has used charge-density methods to 
predict physical properties such as electric-field 
gradients at the nuclei. He recommends assessment of 
the validity of such predictions as a means of differen- 
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Fig. 1. The dependence of the determined B value (A 2, curves of 
negative curvature) and of the fit to the data (GoF, curves of 
positive curvature) on the chosen value of the cusp constraint 
[bohr -~, see equation (4)]. Solid lines: with Ciementi's (1965) 
SCF core wavefunction; dashed lines: with the Bagus-Gilbert 
(1967) SCF core wavefunction. Stewart (1973c), with ~ = 1-72 
and using Clementi's X~s, obtained B = 0.140 (4). 
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tiating between charge-density models, but the nature 
of the dependence of the results on the model has not 
been fully explored. 

Since (4) was an ad hoc choice of a cusp constraint 
and as the exponent of the zs22~ ° orbital had been 
arbitrarily fixed at the standard molecular value of 
1.72 bohr -1 we have investigated the dependence of the 
result on the choice of exponent. Although the C(3p) 
SCF wavefunction of Bagus & Gilbert (1967) has a 
slightly lower energy than that of Clementi (1965), 
used by Stewart (1972b), the cusp discrepancy is 
somewhat larger. We repeated our analyses using the 
Bagus-Gilbert ~c~. The results of these two investi- 
gations are illustrated in Fig. 1. 

The B value is strongly dependent on the choice 
of the exponent and on the particular ~cF chosen. 
If the exponent is sufficiently large the cusp constraint 
has a negligible effect on the B value (0.178 + 0.003* 
,~2) or on the GoF parameter (2.68). As the exponent 
decreases so does the B value, and the GoF parameter 
increases. As expected, the changes are larger for the 
analysis with the Bagus-Gilbert core-density function 
with its bigger cusp discrepancy. These results show 
that this form of a cusp constraint is not particularly 
useful, in that if it results in a lower B value it worsens 
the fit to the data. 

The present models 

Valence-density models of the same general type as 
those used by Stewart (1972b) have proved rather 
successful for the representation of valence density 
for atoms with atomic numbers less than ten. We have 
further explored these models. An analysis of accurate 
Pendell6sung data for silicon (Price, Maslen & Mair, 
1978) has shown that valence-density models do not 
extend readily to heavier atoms. We have therefore 
explored a deformation-density model with exponential 
functions, which does extend to heavier atoms, as an 
alternative. At the same time we have endeavoured 
to establish which physical properties will be reliably 
determined by such analyses. 

Third and fourth-order deformation density func- 
tions were initially chosen with the same form as the 
valence-density functions of Stewart (1972b), i.e. 
exponential radial functions of orders 3 and 4 respec- 
tively [equation (2)]. The normalization of the angular 
functions, which are proportional to the third and 
fourth-order Kubic Harmonics, was chosen so that the 
electron content of the positive (or negative) parts was 
one electron. Thus the population parameters, O for 
the octupole and H for the hexadecapole, represent 
the number of electrons redistributed from the negative 

* All least-squares error estimates have been multiplied by the 
GoF. 

parts to the positive parts of the function. The octupole 
density function is then 

P3(r) = O[ZON°+V(NO + 2)!]r v° exp( - -ZOr)[2xyz / r  3] 
(5) 

and the hexadecapole density function is 

p4(r) = H[ZHNn+3/(NH + 2)!It TM exp(- -ZHr)  

x [ 160/27 v/3n] [x 4 + y4 + Z 4  _ (3/5)r4]/r 4 

(6) 
with NO and N H  initially set to 3 and 4 respectively, 
and with Z O  and Z H  initially constrained to be equal. 
These exponents should be comparable to twice 
Stewart's (1972b) exponent 

Table 1 shows the results of the valence-density 
analysis, model I, and this deformation-density 
analysis, model II. The four parameters of the former 
are the B value, the valence-density function exponent, 
2~ and the populations O and H of the octupole and 
hexadecapole functions. The latter model has the 
valence exponent, 2~, replaced by the octupole and 
hexadecapole exponent, ZO.  The charge-density 
parameters, O, H and Z O  or 2~, agree closely for 
the two models. The refinement indices,* R w and GoF, 
are not significantly different. The B values, however, 
are quite different. 

Inclusion of the overall scale factor, K, of the data as 
a variable parameter resulted in a value of 0.998 + 
0.006, in support of G6ttlicher & W61fel's (1959) claim 
that their measurements were absolutely scaled. The 
correlation coefficient between the scale factor and the 
B value was 0.89. (In the refinements for models I, II 
and III in Table 1 the scale factor was fixed at unity.) 

Inclusion of Z H  as a separate parameter resulted in a 
value close to ZO.  In subsequent analyses with NO = 3 
and N H  = 4, Z H  was constrained to equal ZO.  As is 
discussed in more detail below, it is the positions of the 
maxima of the functions r2pa(r) and r 2 p 4 ( r )  which are 
well determined, and these occur at r 3 = (NO + 2)/ZO 
and r 4 = ( N H  + 2) /ZH.  Varying these radial orders 
NO and N H  thus necessitates separate refinement of 
the exponents Z O  and Z H .  

In the analysis of the electron density in crystalline 
silicon (Price, Maslen & Mair, 1978) it was found 
necessary to include a monopole term in the deforma- 
tion density. Simultaneous determination of a popula- 
tion for a similar monopole and the B value from the 
X-ray data alone was not possible for diamond, 
because the terms were correlated too strongly, the 
correlation coefficient calculated from the least-squares 
matrix being 0.99. The possible existence of a mono- 
pole term was therefore explored with the B value 

* The refinement indices, R and R w are defined 

R = Z IAFil/E IFi.obsl 
R,.,, = 1(I; ~ , . , ' l~ / I ;  ~ . o b ~ ) ] ' " 2  

where co I is the weight of the/th observed structure factor, Fi,ob s. 



176 ELECTRON-DENSITY STUDIES. II 

fixed at 0.15 A 2 (the lattice-dynamics value). Initially, 
an analysis was made with a term of the general form 

P0(r) = (1/4zr) {PA'[N o 4 N o ( Z  -- 12) r - N1 (Z - 9)r 2] 

+ PB'[--N2r 2 + N3r 3] 

+ P C ' [ - N z r  2 + N4 r4] }e -zr (7) 

where the N i = Zi+3/(i + 2)! are normalization con- 
stants. This function integrates to zero and leaves the 
cusp condition unaltered. The correlation coefficients 
between the three populations PA' ,  PB '  and PC'  were 
greater than 0.9. The Fourier transforms of the 
corresponding density functions are not readily 
distinguishable from one another, within the range of 
the accessible data. It was clear that separate co- 
efficients could not validly be extracted. PA' and PB' 
were arbitrarily set to zero. PC'  and the corresponding 
exponent Z were included as variable parameters in 
the analysis.* The results of this analysis are also 

* Following the normalization ideas embodied in (5) and (6), 
that the population parameter of a deformation term should indicate 
the number of electrons transferred from the negative regions 
to the positive regions, we quote the monopole population, PC, 
where co 

PC = PC' I (N4 r4 - N 2 r 2) e -zr r 2 dr 
R 

= PC'[0.328533] 

with R = , /30/Z satisfying po(R) = 0. 

Table 1. Results  o f  the charge-density refinements with 
models I, II and III (see text) 

The orders of the octupole and hexadecapole radial functions 
were fixed at 3 and 4 respectively. In model I all the valence 
exponents were constrained to be equal. In models II and III the 
octupole (ZO) and hexadecapole (ZH) exponents were con- 
strained to be equal. In model III the B value was fixed at 0.15 A 2. 
Comparable results of McConnell & Sanger's (1970) analysis 
are included under the heading 'M & S'. Units are A 2 for B, 

e for PC, 0 and H, and bohr -1 for ~, Z, and ZO. 

Valence 
density Deformation density 

shown in Table 1 as model III. Some of the results 
of McConnell & Sanger's (1970) analysis are included 
in Table 1 under the heading 'M & S' for purposes of 
comparison. 

The parameters, O, Z O  and H, of  the third and 
fourth-order deformation functions, and the refinement 
indices, R w and GoF, are very similar for the three 
models. McConnell & Sanger's (1970) R w factor is a 
little larger, but the amplitudes of the octupole and 
hexadecapole functions are the same as those with 
the other models. The positions of the maxima of the 
various functions r2p3(r) are the same within the errors. 
The B values, however, are quite different. Model III, 
with the monopole term, is the only published analysis 
consistent with the lattice-dynamic or neutron-diffrac- 
tion B value. The monopole term is a sharp function 
(core deformation) redistributing charge from near 
(within 0.13 A, or 0.09 of the bond length) the nucleus 
to regions further from the nucleus. 

The electron contents of the lobes of the octupole 
and hexadecapole functions are simply related to the 
populations O and H. The tetrahedral octupole function 
has four positive lobes in the bonding directions and 
four negative lobes in the antibonding directions. 
Because of the normalization employed in (5) the 
electron content of each lobe is equal to 0/4.  The 
hexadecapole function has eight negative lobes in the 
bonding and antibonding directions of electron content 
equal to - H I 8 .  The electron contents of the octupole 
lobes are then 0.078 + 0.012, 0.082 + 0.010 and 
0.080 + 0.010 (electrons) for models I, II and III, 
to be compared with Stewart's (1973c) value of 
0.070 + 0.011 with the cusp-constrained valence 
density model, and that of McConnell & Sanger 
(1970) of 0.081 + 0-029 using Gaussian radial 
density functions. The electron contents of the negative 
hexadecapole lobes are 0.030 + 0.008 (models I, II 
and III), 0.032 + 0.009 (Stewart, 1973c) and 0-022 + 
0.009 (McConnell & Sanger, 1970). 

I II III M & S 

B O Z O H  P C Z O Z O H  
B ~ O H  (PC=O.O) ( B = 0 . 1 5 )  B c O B  bH 

B 0.178 (5) a 0-209 (4) (0.15) 0.206 (3) 
PC - - 0.092 (13) - 
z - - 0.22 (3) - 
0 0.31 (5) 0.33 (4) 0.32 (4) 0.32 (12) 
z o  [3.12 (4)1 c 3.08 (17) 3.08 (18) 0.62 (4) b 
n - 0 . 2 4  (7) - 0 . 2 4  (7) - 0 . 2 4  (7) - 0 . 1 8  (7) 
rm.3 a [0.55] 0.56 (3) 0.56 (3) 0.62 (3) 

R w 0.0084 0.0090 0.0090 0.0101 
R 0.0089 0-0094 0.0094 0.0097 
GoF 2.66 2.86 2- 97 - 

(a) Estimated standard deviations in the last figure quoted in 
parentheses. (b) McConnell & Sanger's (1970) Gaussian breadth 
parameter, B, is in units of  bohr -2. (c) This is 2~ which should 
be comparable to ZO. (d) The position of the maximum of the 
function r2p3(r) is expressed as a fraction of the bond length. 

Residuals 

Although model III is consistent with the lattice- 
dynamic B value the fit to the data (GoF _~ 3) is far 
from satisfactory. This has been the ease for all 
published analyses of this data. Table 2 shows the 
observed, F o, and calculated, F c, structure factors, the 
difference, AF = F o -- Fc, and the weighted squared 
difference, (AF/o)  ~, the sum of whfeh is minimized by 
the least-squares. The mean of these terms is (GoF) 2 
(1 _ re~n) and for a GoF of unity this would be 0.7 to 
0.8 for the models II and III considered here. 

The most poorly fitted data point is that of the 
overlapping 333-511 reflexions when F~ is some 7-80 
less than F o. The 220, 400 and 440 reflexions are also 
badly fitted but the F~ values are greater than the F,, 
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values. If we assume that the Fo'S and o's are reliable 
experimental values then the charge-density model is 
clearly deficient. The simplest alternatives are to vary 
the radial form of the multipoles or to extend the level 
of the multipole expansion. 

The radial orders, NO and NH, of the octupole 
and hexadecapole functions were varied, with the 
exponents Z O  and Z H  separately refined. The fit to 
the data was insensitive to these parameters, with a 
shallow minimum at NO ~ 4 and N H  ~_ 10, when the 
fit to the 400, 333-511 and 440 data points was 
slightly improved. 

The multipole expansion was extended by the 
addition of a sixth-order or hexacontatettarapole term 
of the form: 

P6(r) = (P6) N(Z6,N6) r v6 exp(--Z6r)(KH6) (8) 

where KH 6 is the sixth-order Kubic Harmonic. 
Initially, the parameter N6 was fixed at 6, and P6 
and Z6 were refined. This resulted in an insignificant 
improvement and the P6 parameter was determined as 
0.4 of its e.s.d. Some improvement was obtained by 
varying the radial order, N6, but only by allowing it 
to go to physically unreasonable values. The term 
appears to have the right symmetry to reduce the 
residuals, provided its Fourier transform could be made 
sufficiently sharp by an appropriate choice of N6 and 
Z6. However, even with extreme values for these 
coefficients, the broadening produced by convolution 
with the thermal-smearing function is such that 
improvement is limited to the 333-511 and 400 
reflexions. 

Table 2. Residuals after the analyses with models II 
and III 

F~ aF (,~F/a) ~ 
h k l F o II III II III II III 
11 1 18.57 18.57 18.57 -0.01 -0.01 0.0 0.0 
2 2 0  15-29 15.46 15.47 --0-17 --0.18 5.6 6.5 
3 1 1 9.01 9-02 9-01 --0.01 --0.01 0-0 0-1 
2 2 2  1.15 1-08 1.08 0-07 0-08 0-7 0.9 
4 0 0  11.11 11-35 11.34 --0.24 --0.23 11.1 10-1 
3 3 1 8.29 8.30 8.30 -0-01  --0.01 0-2 0.1 
4 2 2 10.50 10.49 10.49 0-01 0.02 0.4 1.5 

333-511 7-21 7.00 6.99 0-22 0.23 59-6 64.5 
4 4 0  9.08 9-35 9.34 --0.27 --0-26 13-9 13.1 
5 3 1 6-26 6.29 6.28 -0 -03  --0.03 3.4 2.1 
6 2 0  8.35 8-32 8.31 0.03 0-04 0-6 0-9 
5 3 3 5.70 5.75 5.75 --0.05 --0.05 3.8 3.7 

551-711 5.07 5.11 5.11 --0.04 --0.04 5.5 5.7 
6 4 2  6-76 6.78 6-78 --0.02 --0.02 0.4 0.8 

553-731 4.58 4.60 4.61 - 0 - 0 2  --0.02 0.2 0.3 
660-822 5.58 5-51 5-53 0.08 0.06 5-7 3.3 
555-751 3.76 3.75 3.77 0.00 --0.01 0.0 0.1 
753-911 3.44 3-40 3.42 0.04 0.02 3.2 0.8 

= E ( A F / o )  2 114-51 114-50 
GoF 2-86 2.97 
R w 0-0090 0.0090 
R 0-0094 0-0094 

It would seem that the data are incompletely described 
by charge-density models with radial functions of 
single-exponential or Gaussian form. Models with two- 
term radial functions may resolve the discrepancies. 
Of course, the poor fit could be caused by unreliable 
Fo's and the associated experimental error estimates. 
There may be a significant extinction correction, as 
found in a diamond-powder neutron diffraction 
experiment (Price, Maslen & Moore, 1978). Such an 
extinction correction cannot be applied to this data set 
at present, as powders of three diameters, 2.5, 5 and 
10/am, were used. 

However, it is worth noting that Bentley (1974) 
has found that the Hartree-Fock theoretical densities 
for the first-row diatomic hydrides project into a 
valence-density model with density functions of single- 
exponential form only to an accuracy of R w ~_ 0.015, 
where R w is a residual which should be comparable to 
experimental R w factors. 

Physical properties 

Stewart (1972b) has recommended the estimation of 
such physical properties as local electric-field gradients 
from the parameters determined by a charge-density 
analysis. There are dangers in such a procedure 
which are best appreciated by reviewing certain 
aspects of least-squares fitting. 

Let {xi,Yi, O} be a set of experimental data points 
and the associated e.s.d.'s, where there is a linear 
function given exactly by y = f(P~,...Pn; x) where 
{Pk} is a set of parameters, and let gD'i (calc.)] be an 
unbiased estimate given by the function gly], with an 
associated error calculated from estimates of the 
parameter errors, {ok}. If the exact form of the function 
f is not known some model function y =f ' ({Pk};  X) 
may be an adequate fit over the range of data, but 
the estimates of the properties g'D'i (calc.)] and the 
e.s.d.'s will now be biased by the assumptions of the 
model. 

This is the situation in electron-density analyses. The 
exact  functional relation is not known and the models 
only seek to describe adequately those charge-density 
features determined from the range of data. Estimates 
of properties which depend upon the structure factors 
in a highly nonlinear manner will be biased by the 
model and the error estimates will be unreliable. 
Electric-field gradients at each nucleus depend strongly 
on the shape of the electron density in regions near 
the nucleus, but such features contribute only weakly 
to the low-angle structure factors. 

We illustrate this point by investigating the model 
dependence of estimates of the gradient of the electric- 
field gradient at the carbon nucleus in diamond. Fig. 2 
shows the effect of varying the radial order, NO, of the 
octupole between 1 and 9. The GoF is relatively 
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Fig. 2. The dependence of the GoF (dashed line), the estimate 
of the gradient of the electric-field gradient, <Vxy~) (units of 
1032 J m -3 C-l; solid line), and of rm. 3, the position of the 
maximum of the function rSp3(r), (as a fraction of the C-C 
bond length; chain-dotted line), on the radial order, NO, of the 
octupole function. Stewart's (1973c) estimate of (Vxy,) shown 
with error bars. When NO = 1 the < Vxyz> integral diverges. 

insensitive to the parameter, there being a shallow 
minimum at NO ~ 4. The GoF is not significantly 
greater at NO = 1 or NO = 9, and hence the data 
are not sufficient to determine this parameter. The 
estimate of the gradient of the electric-field gradient 
(Fxy~), however, is strongly dependent upon the 
assumed value of NO, the integral diverging when 
NO = 1. Stewart 's (1973c) estimate of 1.5 + 0.2 x 1032 
J m -3 C -~ is seen to be a consequence of his choice of 
3 for this parameter. Also shown on Fig. 2 is the 
model estimate of the position of the maximum of 
the function r2pa(r), which is the radial amplitude, per 
unit solid angle, of the octupole deformation function. 
The estimate is 0.56 +_ 0.03 of the C - C  bond length 
for 1 < NO < 6 and is reasonably independent of the 
NO parameter. 

Which properties are well determined? 

The above results suggest that the position of the peak 
of the function r2p3(r) is well determined, independently 
of details of the analysis such as the radial order, NO, 
or even whether P3(r) is a Gaussian or exponential 
function. One might hope to be able to determine 
the position, electron content, peak height and 'width' 
of these deformation functions. However, with only two 
adjustable parameters,  O and ZO, this is impossible. 
Some idea of which properties will be well-determined 
can be obtained by approximating the fitting procedure. 
The fitting is in reciprocal space with an experimental 
weighting function. If the radial dependence of the 
experimental octupole was exactly described by an 
exponential function of some fixed order, N - 2 :/: NO, 
then we can visualize the least-squares adjustment of 
the shape of the function, via the model parameters 
O and ZO, to minimize X 2. If the fitting was in real 
space rather than reciprocal space, then we can solve 
the problem exactly for the best parameters O and 

Z O  for each NO, and investigate the expected NO 
dependence of such results as the position of the 
maximum, the electron content and the peak height. 
The difficulty is in converting the expression for X 2 
from a reciprocal-space sum to a real-space integral. 

In reality, we minimize a residual, X 2, given by 

Z 2 = ZtAF/o(F)] 2 (9) 

where AF = F o - F c is the difference between the 
observed and calculated structure factors, o(F) is the 
experimental uncertainty in F o, and the sum is over all 
the observed reflexions. The latter usually means a sum 
over all reflexions up to the sin 0/2 cut-off. If there 
is no correlation between the octupole deformation 
function and the other parameters then the octupole 
contribution to F o, Fc, o(F) and hence %2 is, in principle, 
separable. Writing 

& c t ( S )  =f3(S)[KH3(0o#o)] (10) 

as the product of a radial term and the third-order 
Kubic Harmonic, results in 

2 
,~oct----- Z ( ' O i ( z J f 3 , i )  2 ( 1 1 )  

i 

with 
to z = (KHa,/Ooct.z) 2. (12) 

The radial scattering factor,f3(S),  is the Fourier-Bessel 
transform of the radial part of the octupole density 
function, R 3(r) 

0o 

f 3 ( S ) =  f r2R3(r)j3(Sr)dr. (13) 
0 

When the radial function, Ra(r), is an exponential 
function as in (5) then f3(S)  is proportional to the 
integral 

ot~ 

f s k ( S , Z ) =  ~ r n e x p ( - Z r ) j k ( S r ) d r  (14) 
0 

with k -- 3. This is given by Stewart, Davidson & 
Simpson (1965) as 

2k+½(n + k)l 

f s k ( S ' Z ) =  Sn+l(2k + 1)lt ff+~(1 + 32) in+b/2 

x rF,{n + ½; -n  + ½; k + ½; (1 + f12)-,} (15) 

where fl = a +  (1 + 32) v2 and a =  Z / S .  
If the radial function R3(r) is of Gaussian form 

then f3(S) is proportional to 
oo 

f ~ k ( S , Z ) =  f r " e x p ( - Z r 2 ) j k ( S r ) d r  (16) 
o 

with k = 3. This integral is found in Watson (1952) as 

r ' [ (n  + k + 1)/2]S k 
f"a'k(S'Z) = 2Zt"+k+lV2(2k + 1)1[ exp( - -S2 /4Z)  

x ~Ft{1 + ( k - n ) / 2 ; k  + 3 /2;$2/4Z} .  (17) 
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The oetupole contribution t o  X 2 of (11) can then be 
rewritten as an integral 

Xo~t = to(S f A[rER3(r)]j3(Sr)dr dS  (18) 
o 

where the weighting function to(S) takes into account 
the crystal field [so that to(S) is a sum of delta func- 
tions], the sin 0/2 cut-off [so that to(S) = 0 for S > 
Sm~ ~] and the S 2 dependence of the volume element, 
in addition to the experimental toi's of (12). In principle 
this integral can be rewritten in real space as 

GO 

2 Xo~t = f to(r){A[r2Ra(r)l}2dr (19) 
0 

where the weighting function to(r) will be a function 
of the experimental a~'s, the sin 0/2 cut-off, the crystal 
field and unknown properties of the Fourier-Bessel 
transform of (13). 

It is instructive to consider fitting a calculated 
octupole radial function, R3,ca~c(r), to an observed 
function, R3,obs(r), by the minimization of (19) when 
to(r) is approximated by the simple form, 

to(r) = ?'. (20) 

Let us consider the observed and calculated density 
functions to be of exponential form, as in (5), 

11 

r2R3.calc(r)- O[Z"+l/nt]r"e -z~ (21) ~'" ....... 
r 2R3.6.m, , 

and w i t h  r2R3,obs(r) given by the same expression with ,o 
O replaced by O o, Z replaced by C and n replaced 
by N. Here n is fixed at integer values not necessarily 
equal to N, and O and Z are parameters adjusted to 
minimize (19). The results are 

Z n + (p + 1)/2 
~ = U  + (p + 1)/2 (22) 

and 
O [n + (p + 1)/2I"+P[N + (p + 1)/21 u+~ 

Oo [(N + n)/2 + (p + 1)/2] N+n+p+~ 

2"n! ( N +  n +p)t  
× (23) 

2SN! (2n + p)! 

The peak height of the calculated function is 

r2R3,calc(r)]max = OZ n"e-n/n!. (24) 

The position of the maximum of r2R3(r) is at 

rn,ma x = n/Z. (25)  

Thus, from (22), this is a well-determined quantity 
ifp = - 1. 

Also of interest are the position and height of the 
maximum of the density function R 3 ( r  ) itself. The 
position of this maximum is at r = (n - 2)/Z.  From 

1 2 3 

\ x  

,°,[ 

/ 

(a) 

1 2 3 /, ,5 NO 6 n-2 7 8 9 

2 (b) 

. -5.7: S 

s ¸~ 7~¸~ 
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8! ~ ~ ~ ~ .o  ~ °-2 ; ; ; 

(c) 

1 6 [ ~  

14/ 
R3 ~ J.,.mo= ~ \ 
Rz'6"moi ~ X 

12 ~ "~x 

1"0 ~ 

81 ~ ~ ~ ~ ~ ; ~ ; 
NO n-2 

(a) 

Fig. 3. The ratios of (a) the determined position, Yn,max, Of the 
maximum of r2R3,n to the 'true' value, r6,max; (b) the determined 
electron content, O, of the octupole function to the 'true' value 
O0; (c) the calculated peak height, r2R3,n (r = r.,max) to the 
'true' value r2R3.6 (r = r6.ma~); (d) the calculated peak height 
R3,n(max) to the 'true' value R3,6(max. ). Solid line: experi- 
mental results, dashed line: expected results with p = - 1 ,  
chain-dotted line: with p = 0. 
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(22) this would be well-determined if p = - 5 .  The 
calculated peak height is 

R3,calc(r)]ma x = OZ3(n  -- 2)"-2e-("-2)/nI .  (26) 

Fig. 3(a), (b), (c) and (d) depict these [equations 
(25), (23), (24), (26) respectively] results graphically 
for p = 0 and p = - 1 ,  with N = 6 ( N O  = 4) and 

= 3.66 bohr -~ (the experimental result for Z O  when 
N O  = 4 which gave the lowest experimental GoF). 
Also shown are the experimental results for (a) the ratio 

°i• '3 ',~ 's ,Ib 'S '7 ; '9 "" 16 
• 0 -29 -58 .87 1.16 1.45 r 1.74 bohr2.03 2.32 2.61 2.91 
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(c) 
Fig. 4. The functions r2R3.,(r) for (a) n = 3, NO = 1; (b) n = 8, 

NO = 6 and (c) n = 11, NO = 9. r is expressed both as a 
fraction of the bond length (r/b) and in bohr units (r). The 
area under each curve is the electron content, O. Solid line: 
experimental results, dashed line: expected results with p = -1, 
chain-dotted line: with p = 0. By constraint, the three curves 
are coincident for NO = 4. [In Fig. 4(b) (NO = 6) the experi- 
mental and p = - 1 curves are coincident.] 

of the positions of the maxima, r ,  max/F4 max, (b) the 
ratio of the electron contents or areas O~/O 4, (c) the 
ratio of the peak heights of r2R; rZR3,, (r = n/Z)/rZR3,6 
(r = 6 / 0  and (d) the ratio of the peak heights of  R; 

Ra.n[r = (n - 2 ) / Z l / R 3 ,  6 (r = 4 /Q.  

For 1 < N O  < 6 the observed positions of the 
maxima closely follow the predicted values with 
p = --1. The p = 0 predictions are a poor description 
of the observed results. Similarly, for 1 < N O  < 6, the 
observed peak heights [Fig. 3(c) and (d)] closely 
follow the predicted values with p = - 1 .  The qualitative 
result is the same with p = 0 but the quantitative 
agreement with the experimental results is not as good. 
The results for the electron contents (Fig. 3b) are the 
reverse of these, with the p = 0 line lying a little 
closer to the experimental results than that with p = - 1 .  

Graphs of the functions r2Ra(r) for N O  = 1, 6 and 9 
[Fig. 4(a), (b) and (c) respectively] show that for 
1 < N O  _< 6 the p = --1 functions closely follow the 
experimentally fitted functions (the agreement at N O  = 
4 is constrained to be exact) except that the p -- - 1  
peak heights are slightly larger. The p = 0 functions, 
however, are quite different from the experimentally 
fitted functions, even though the total areas (electron 
contents) may be very similar. Thus, for 1 < N O  < 6 
the least-squares fitting of structure factors with 
experimental weights [the minimization of (18)] 
appears to be well-described by the approximate 
procedure of minimizing (19) with weighting function 
a~(r) = 1/r. 

The minimization of (19) is equivalent to the 
minimization of 

oO 

2 Zoet = f 09'(r) [A(R3(r)] 2 r 2 dr  (19') 
0 

with og'(r) = r2co(r). If  og'(r) = r p' then p '  = p + 2. 
Thus the minimization of (18) appears similar to the 
minimization of (19') with p '  = 1 but not with p '  = 2. 
The results with p '  = 0 were considerably worse. 
Fig. 5 shows the predicted fitted curves with p = - 1  
for N O  = 1 to 9. 

For 7 <_ N O  _< 9 the actual parameters deviated 
significantly from the expected results with p = - 1  
or p = 0. The amplitudes of the actual curves were 
considerably below the expected results and the 
positions of the peak maxima shifted towards the 
centre of the atom [Figs. 3(a), (b), (c) and 4(c)]. These 
radial functions become increasingly sharp as the N O  
parameter increases and their Fourier transforms 
[equation (13)] extend further into reciprocal space. 
The different behaviour for 7 < N O  < 9 may thus be 
the effect of the sin 0/2 cut-off. 

In summary,  it appears that, at least for 1 < N O  < 6, 
(18) can be approximated by (19) with og(r) given 
by (20) with p = - 1 .  Fig. 5 shows the results for the 
fitted functions if the 'true' function had N O  = 4 and 
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Fig. 5. The least-squares octupole functions r2R3,,(r) with p = --1 assumed. The 'true' function is r2R3,6(r) (NO = 4). Results for NO = 1 
(n = 3) to 9 (n = 11) shown, rib is r as a fraction of the C-C bond length. 

Z O  = 3-66 bohr -1. If we cannot determine this width 
parameter, N O ,  from the least-squares, then we can 
expect the position of the maximum of the constrained 
function to be well-determined, but the peak height 
(per unit solid angle) and electron content will vary, 
in this analysis by up to 20%. Fig. 3(d) indicates 
that the predicted peak height of R3(r)  can be expected 
to be overestimated by some 40% if an N O  value of 
1 is chosen when the 'true' value is 4. If N O  is chosen 
too large, on the other hand, the peak heights are 
underestimated by only a few per cent. The position of 
the maxima of R3(r)  is overestimated by 50% when 
N O  = 1 and underestimated by 20% when N O  = 8. 

The determination of gross atomic charges has been 
a prime goal of charge-density analyses. The case of 
diamond illustrates the effect of cell size on the pre- 
cision of estimates of gross atomic charge. The carbon 
atom in diamond has exactly six electrons but in a trial 
refinement we treated the valence population as a 
variable parameter. The large e.s.d, in the result, 
3.66 + 0.22 e, illustrates the problem of determining 
gross charges for structures with small cell dimensions. 
This was encountered in charge-density analyses on a 
number of oxalate structures by Allen-Williams, 
Delaney, Furina, Maslen, O'Connor,  Varghese & Yung 
(1975). It contrasts with the well defined populations 
obtained for structures with larger dimensions (Price, 
Varghese & Maslen, 1978). 

Comparison with crystal 'Hartree--Fock' results 

Euwema & Greene (1975) have recently published 
X-ray structure factors for diamond calculated by their 
crystal Har t ree-Fock formalism. Within the harmonic 

and convolution approximations, the effect of  thermal 
motion should be to reduce the structure factors by 
the temperature factor, exp[ -B(s in  0/2)2]. Fig. 6 is a 
plot of the natural logarithm of the ratio of the experi- 
mental to the theoretical structure factors against the 
value of (sin 0/2) 2 for the structure factors calculated 
by Euwema & Greene (1975). Within the above 
approximations these points should lie on a line with a 
gradient equal to (minus) the B value and an intercept 
equal to the logarithm of the experimental scale factor, 
K. The least-squares line is shown. The parameter 

- O5 

In (FolF c) 

- t0 

- 2500 

220 

1,22 

I 
l.o0 

1 2 3 ( s ' n e / x )  2 t, t l  ~ , 

Fig. 6. A determination of the diamond B value and scale factor 
from G6ttlicher & W61fel's (1959) X-ray powder data with it 
assumed that the 'at-rest' electron density is that of Euwema & 
Greene's (1975) crystal SCF calculation. The ordinate is the 
natural logarithm of the ratio of the experimental to the theoretical 
structure factors. The abscissa is (sin 0/2) z. Within the harmonic 
and convolution approximations the B value is (minus) the slope 
of the line and the intercept is the logarithm of the experimental 
scale factor. The least-squares line [B = 0.172 (6) scale = 
1.004 (29 GoF = 5-11 is shown. [The 222 result, ln(Fo/Fc) = 
0.51 (7), is well above the graph, but has a relatively large 
error bar.] 
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estimates are B = 0.172 + 0.006,* K = 1.004 + 
0.002.* The line is a poor fit to the data, and the 
GoF parameter is 5.1. 

Thus although the crystal Hartree-Fock results 
support the neutron-diffraction B value, and G6ttlicher 
& W61fel's (1959) claim that their data was absolutely 
scaled, they are not in good agreement with the lattice- 
dynamic B value and they are a poor fit to the experi- 
mental structure factors. Both of these may be due to 
the limited nature of the theoretical basis set. In 
calculations on isolated molecules it has been shown 
(Coppens, 1975; de With & Feil, 1975) that d-type 
polarization functions are necessary to adequately 
allow for the build up of charge in the bonding region. 

On the other hand, the positions of the maxima of 
the radial functions such as r2R3(r) appear to be well- 
determined. 

All of the published charge-density models have been 
poor fits to the experimental structure factors. An 
analysis resulting in a GoF of unity will have R factors 
near 0.3%, rather than near 1%, as at present. Our 
studies indicate that this will necessitate two-term radial 
functions for the octupole and hexadecapole functions. 

Euwema & Greene's (1975) theoretical structure 
factors are in poor agreement with the experimental 
values. This is probably because of the absence of 
d-type polarization functions in their basis set, but may 
be partly because of the inadequacy of the convolution 
approximation (Price, Varghese & Maslen, 1978). 

Conclusion 

The evidence that the diamond B value is less than the 
standard X-ray refinement value of 0.20-0.21 ,/k 2 is 
increasing, with the lattice-dynamic value of 0 .149-  
0.150,4,2, the neutron diffraction value of 0 .14-0.17 
/~2 and the value of 0.172 + 0.006 inferred from the 
recent theoretical calculations of Euwema & Greene 
(1975). If the B value is less than about 0.18 /~2 
then the valence density is negative near the nucleus. 
This can be seen in valence-density maps (Yang, 1975). 
It is unlikely to be due to the failure of the SCF 
core-density functions to satisfy the nuclear cusp 
condition. The spherical part of such core and valence 
deformation has been parameterized by the monopole 
term defined above. 

The various charge-density models which have been 
used to describe the diamond powder data of GSttlicher 
& W61fel (1959) are seen to be similar in their fit 
to the data and in their description of such broad 
charge-density features as the electron content of the 
lobes of the octupole and hexadecapole functions and 
of the position of the maximum of these functions. 
They differ in their estimates of the B value and in 
their estimates of the higher-order gradients of the 
electric field at the carbon nucleus. This is a result 
of strong correlation between the sharp monopole 
terms of the charge-density models and the B value, 
and between the radial order and exponent of the 
octupole or hexadecapole functions. A realistic charge- 
density analysis requires an independent, precise B 
value and the acceptance that the low-angle structure 
factors are relatively insensitive to the higher-order 
gradients of the electric field. 

It was shown that if, as in this analysis, charge-density 
parameters such as NO cannot be determined reliably 
from the data, then even gross features such as electron 
contents and peak heights will be biased by the model. 

* Unlike earlier least-squares parameter error estimates, these 
uncertainties have not been multiplied by the GoF. 
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Electron-Density Studies. 
III. A Re-evaluation of the Electron Distribution in Crystalline Silieon 
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Highly accurate absolute measurements of the X-ray structure factors of silicon [Aldred & Hart, Proc. R. 
Soc. London, Ser. A, (1973), 332, 223-238] have been used to analyse a number of models for the electron 
distribution. Initially, the valence-electron distribution (with the neon core assumed to be unmodified from 
that of the isolated silicon atoms) was built up with a radial basis of the form r ~ exp (-Q') and non-sphericity 
was allowed for by inclusion of octupole and hexadecapole terms. Improved representation was achieved 
with related models in which deformations from the total isolated-atom electron density were refined instead. 
The exact shape of the deformation electron density in the region of the bond was sensitively dependent 
on the monopole deformation term. The anomalous-dispersion contributions (Af') to the scattering factors 
were refined and found to be in agreement with recent interferometric measurements, but not with recent 
calculations. The octupole density term is slightly sharper at 293-2 than at 92.2 K, and the structure 
factor for the 222 reflection is predicted to be larger at the higher temperature. These effects may be due 
to a failure of the convolution approximation or to uncertainties in the anharmonic corrections to the 
structure-factor data. 

Introduction 

The one-electron density of a molecular system is a 
fundamental observable (Hohenberg & Kohn, 1964) 
which, in principle, can be measured by coherent X-ray 
scattering. The qualitative description of a molecule 
as a sum of deformed atoms (or 'pseudo-atoms') has 
long been popular in chemistry, and recent work by 
Bader and co-workers (see, for example, Srebrenik & 
Bader, 1975) indicates that this viewpoint may have a 
more rigorous basis in that the properties of a system 

may be expressible in terms of those of its component 
density fragments. 

A variety of pseudo-atom definitions have been pro- 
posed for the analysis of X-ray diffraction data 
(Dawson, 1967a; Kurki-Suonio & Ruuskanen, 1971; 
Hirshfeld, 1971; Stewart, 1972, 1973a; Sygusch, 1974). 
The essential differences were discussed in a previous 
paper [Price & Maslen (1978), hereinafter referred to 
as paper II]. It was shown there that in the analysis of 
powdered-diamond diffraction data most of the models 
resulted in similar fits to the data (R and R w factors of 


